基于粒子群算法和其他智能算法的大规模回盘策略参数优化,backtrader,使用

发表时间:2020-11-15

backtrader内置的策略参数优化方法是权利搜索方法,也就是遍历每个参数组合值。在参数很多,每个参数取值变化范围大的情况下,优化效率是很低的。

可以采用智能优化算法,比如粒子群优化等进行大规模参数优化。下面,我们用python开源算法库optunity来对backtrader策略参数进行优化。

我们的示例策略是一个简单的双均线策略,要优化两个参数,及两个均线移动窗口,目标是使得账户市值最大化。采用optunity中的粒子群算法来优化,代码如下:

# example of optimizing SMA crossover strategy parameters using 
# Particle Swarm Optimization in the opptunity python library
# https://github.com/claesenm/optunity

from datetime import datetime
import backtrader as bt

import optunity
import optunity.metrics


class SmaCross(bt.SignalStrategy):
    params = (
        ('sma1', 10), # 需要优化的参数1,短期均线窗口
        ('sma2', 30), # 需要优化的参数2,长期均线窗口
    )
    def __init__(self):
        SMA1 = bt.ind.SMA(period=int(self.params.sma1)) # 用int取整
        SMA2 = bt.ind.SMA(period=int(self.params.sma2)) # 用int取整
        crossover = bt.ind.CrossOver(SMA1, SMA2)
        self.signal_add(bt.SIGNAL_LONG, crossover)


data0 = bt.feeds.YahooFinanceData(dataname='YHOO',
                                  fromdate=datetime(2011, 1, 1),
                                  todate=datetime(2012, 12, 31))

def runstrat(sma1,sma2):
    
    cerebro = bt.Cerebro()
    cerebro.addstrategy(SmaCross, sma1=sma1, sma2=sma2)

    cerebro.adddata(data0)
    cerebro.run()
    return cerebro.broker.getvalue()

#  执行优化,执行100次回测(num_evals),设置两个参数的取值范围
opt = optunity.maximize(runstrat,  num_evals=100,solver_name='particle swarm', sma1=[2, 55], sma2=[2, 55])

optimal_pars, details, _ = opt
print('Optimal Parameters:')
print('sma1 = %.2f' % optimal_pars['sma1'])
print('sma2 = %.2f' % optimal_pars['sma2'])

cerebro = bt.Cerebro()
cerebro.addstrategy(SmaCross, sma1=optimal_pars['sma1'], sma2=optimal_pars['sma2'])
cerebro.adddata(data0)
cerebro.run()
cerebro.plot()

optunity支持如下几种算法(solver),读者可以分别测试它们。

particle swarm,sobol,random search,cma-es,grid search

更多内容请参考我们编写的 backtrader教程
视频教程

文章来源互联网,如有侵权,请联系管理员删除。邮箱:417803890@qq.com / QQ:417803890

微配音

Python Free

邮箱:417803890@qq.com
QQ:417803890

皖ICP备19001818号
© 2019 copyright www.pythonf.cn - All rights reserved

微信扫一扫关注公众号:

联系方式

Python Free