y = h θ ( x ) = θ 0 + θ 1 x y=h_\theta(x)=\theta _0 +\theta _1 x y = h θ ( x ) = θ 0 + θ 1 x
输入只包含一个单独的特征。
对于样本 ( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) ( x ( i ) , y ( i ) ) ,模型预测值为: y ^ ( i ) = θ 0 + θ 1 x ( i ) {\hat y}^{(i)}=\theta _0 +\theta _1 x^{(i)} y ^ ( i ) = θ 0 + θ 1 x ( i )
误差/残差:样本真实值与预测值之差
e ( i ) = y ( i ) − y ^ ( i ) = y ( i ) − θ 0 − θ 1 x ( i ) e^{(i)}=y^{(i)}-{\hat{y}}^{(i)}=y^{(i)}-\theta _0 -\theta _1 x^{(i)} e ( i ) = y ( i ) − y ^ ( i ) = y ( i ) − θ 0 − θ 1 x ( i )
给定训练集
D
=
{
(
x
i
,
y
i
)
}
D=\{(x_i,y_i)\}
D
=
{
(
x
i
,
y
i
)
}
,找到一条直线(模型)
y
=
h
θ
(
x
)
=
θ
0
+
θ
1
x
y=h_{\theta}(x)=\theta _0 +\theta _1 x
y
=
h
θ
(
x
)
=
θ
0
+
θ
1
x
使得所有样本尽可能落在它的附近。
损失函数(Loss function):最小化均方误差,从而寻找最优的参数。
m
i
n
θ
1
,
θ
0
L
(
θ
1
,
θ
0
)
=
m
i
n
θ
1
,
θ
0
∑
i
=
1
m
(
y
(
i
)
−
θ
0
−
θ
1
x
(
i
)
)
2
min_{\theta_1,\theta_0}L(\theta_1,\theta_0)=min_{\theta_1,\theta_0}{\sum_{i=1}^{m}{(y^{(i)}-\theta _0 -\theta _1 x^{(i)}})^2}
m
i
n
θ
1
,
θ
0
L
(
θ
1
,
θ
0
)
=
m
i
n
θ
1
,
θ
0
i
=
1
∑
m
(
y
(
i
)
−
θ
0
−
θ
1
x
(
i
)
)
2
闭式解
将目标函数
L
(
θ
1
,
θ
0
)
L(\theta_1,\theta_0)
L
(
θ
1
,
θ
0
)
求偏导:
∂
L
∂
θ
0
=
∑
i
=
1
m
2
(
y
(
i
)
−
θ
0
−
θ
1
x
(
i
)
)
(
−
1
)
=
0
∂
L
∂
θ
1
=
∑
i
=
1
m
2
(
y
(
i
)
−
θ
0
−
θ
1
x
(
i
)
)
(
−
x
i
)
=
0
\frac{\partial L}{\partial \theta_0 }=\sum_{i=1}^{m}{2(y^{(i)}-\theta _0 -\theta _1 x^{(i)})(-1)}=0\\ \frac{\partial L}{\partial \theta_1 }=\sum_{i=1}^{m}{2(y^{(i)}-\theta _0 -\theta _1 x^{(i)})(-x_i)}=0
∂
θ
0
∂
L
=
i
=
1
∑
m
2
(
y
(
i
)
−
θ
0
−
θ
1
x
(
i
)
)
(
−
1
)
=
0
∂
θ
1
∂
L
=
i
=
1
∑
m
2
(
y
(
i
)
−
θ
0
−
θ
1
x
(
i
)
)
(
−
x
i
)
=
0
可以解得:
θ 1 ^ = ∑ i = 1 m x ( i ) y ( i ) − m x ‾ y ‾ ∑ i = 1 m ( x ( i ) ) 2 − m x ‾ 2 \hat{\theta_1}=\frac{\sum_{i=1}^m{x^{(i)}y^{(i)}-m\overline x \overline y }}{\sum_{i=1}^m{(x^{(i)})^2-m{\overline x}^2}} θ 1 ^ = ∑ i = 1 m ( x ( i ) ) 2 − m x 2 ∑ i = 1 m x ( i ) y ( i ) − m x y
θ 0 ^ = y ‾ − θ 1 x ‾ \hat{\theta_0}=\overline{y}-\theta_1 \overline x θ 0 ^ = y − θ 1 x
代码
import numpy as np
import matplotlib.pyplot as plt
# 以下两行代码解决jupyter notebook显示图片模糊问题
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
## 测试数据
X = np.arange(0,10,0.1)
Y = 3*X+np.random.random([X.size])*5
def f(x,a):
X = np.ones((len(x),2))
X[:,1]=x
return X.dot((a.T))
a = np.zeros((2))
a[1] = ((X*Y).sum()- X.sum()*Y.sum()/len(X))/((X*X).sum()-X.sum()*X.sum()/len(X))
a[0] = Y.sum()/len(Y)- a[1]*X.sum()/len(X)
Y_Test = f(X,a)
plt.scatter(X,Y,label="原始数据",c='b',alpha=0.5)
plt.plot(X,Y_Test,label="回归线",c='r')
plt.title('一元线性回归')
plt.xlabel("X")
plt.ylabel("Y")
plt.legend()
plt.show()
文章来源互联网,如有侵权,请联系管理员删除。邮箱:417803890@qq.com / QQ:417803890
Python Free
邮箱:417803890@qq.com
QQ:417803890
皖ICP备19001818号
© 2019 copyright www.pythonf.cn - All rights reserved
微信扫一扫关注公众号:
Python Free