Pandas IO工具

发表时间:2020-02-17

Pandas I/O API是一套像 pd.read_csv() 一样返回 Pandas 对象的顶级读取器函数。

读取文本文件(或平面文件)的两个主要功能是 read_csv() read_table() 。它们都使用相同的解析代码来智能地将表格数据转换为 DataFrame 对象 -

pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',
names=None, index_col=None, usecols=None)

形式2-

pandas.read_csv(filepath_or_buffer, sep='\t', delimiter=None, header='infer',
names=None, index_col=None, usecols=None)

以下是csv文件数据的内容 -

S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900

将这些数据保存为 temp.csv 并对其进行操作。

S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900

read.csv

read.csv 从csv文件中读取数据并创建一个 DataFrame 对象。

import pandas as pd
df=pd.read_csv("temp.csv")
print (df)

执行上面示例代码,得到以下结果 -

   S.No    Name  Age       City  Salary
0     1     Tom   28    Toronto   20000
1     2     Lee   32   HongKong    3000
2     3  Steven   43   Bay Area    8300
3     4     Ram   38  Hyderabad    3900

自定义索引

可以指定csv文件中的一列来使用 index_col 定制索引。

import pandas as pd

df=pd.read_csv("temp.csv",index_col=['S.No'])
print (df)

执行上面示例代码,得到以下结果 -

        Name  Age       City  Salary
S.No                                
1        Tom   28    Toronto   20000
2        Lee   32   HongKong    3000
3     Steven   43   Bay Area    8300
4        Ram   38  Hyderabad    3900

转换器
dtype 的列可以作为字典传递。

import pandas as pd
import numpy as np
df = pd.read_csv("temp.csv", dtype={'Salary': np.float64})
print (df.dtypes)

执行上面示例代码,得到以下结果 -

S.No        int64
Name       object
Age         int64
City       object
Salary    float64
dtype: object

默认情况下,Salary列的 dtype int ,但结果显示为 float ,因为我们明确地转换了类型。

因此,数据看起来像浮点数 -

  S.No   Name   Age      City    Salary
0   1     Tom   28    Toronto   20000.0
1   2     Lee   32   HongKong    3000.0
2   3  Steven   43   Bay Area    8300.0
3   4     Ram   38  Hyderabad    3900.0

header_names
使用 names 参数指定标题的名称。

import pandas as pd
import numpy as np

df=pd.read_csv("temp.csv", names=['a', 'b', 'c','d','e'])
print (df)

执行上面示例代码,得到以下结果 -

      a       b    c          d       e
0  S.No    Name  Age       City  Salary
1     1     Tom   28    Toronto   20000
2     2     Lee   32   HongKong    3000
3     3  Steven   43   Bay Area    8300
4     4     Ram   38  Hyderabad    3900

观察可以看到,标题名称附加了自定义名称,但文件中的标题还没有被消除。 现在,使用 header 参数来删除它。

如果标题不是第一行,则将行号传递给标题。这将跳过前面的行。

import pandas as pd
import numpy as np

df=pd.read_csv("temp.csv",names=['a','b','c','d','e'],header=0)
print (df)

执行上面示例代码,得到以下结果 -

   a       b   c          d      e
0  1     Tom  28    Toronto  20000
1  2     Lee  32   HongKong   3000
2  3  Steven  43   Bay Area   8300
3  4     Ram  38  Hyderabad   3900

skiprows

skiprows 跳过指定的行数。参考以下示例代码 -

import pandas as pd
import numpy as np

df=pd.read_csv("temp.csv", skiprows=2)
print (df)

执行上面示例代码,得到以下结果 -

   2     Lee  32   HongKong  3000
0  3  Steven  43   Bay Area  8300
1  4     Ram  38  Hyderabad  3900

微配音

文章来源互联网,尊重作者原创,如有侵权,请联系管理员删除。邮箱:417803890@qq.com / QQ:417803890


Python Free

邮箱:417803890@qq.com
QQ:417803890

皖ICP备19001818号
© 2019 copyright www.pythonf.cn - All rights reserved

微信扫一扫关注公众号:

联系方式

Python Free