基本绘图:绘图
Series和DataFrame上的这个功能只是使用
matplotlib
库的
plot()
方法的简单包装实现。参考以下示例代码 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range('2018/12/18',
periods=10), columns=list('ABCD'))
df.plot()
执行上面示例代码,得到以下结果 -
如果索引由日期组成,则调用
gct().autofmt_xdate()
来格式化
x
轴,如上图所示。
我们可以使用
x
和
y
关键字绘制一列与另一列。
绘图方法允许除默认线图之外的少数绘图样式。 这些方法可以作为
plot()
的
kind
关键字参数提供。这些包括 -
bar
或
barh
为条形
hist
为直方图
boxplot
为盒型图
area
为“面积”
scatter
为散点图
现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar()
执行上面示例代码,得到以下结果 -
要生成一个堆积条形图,通过指定: pass stacked=True -
import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.bar(stacked=True)
执行上面示例代码,得到以下结果 -
要获得水平条形图,使用
barh()
方法 -
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10,4),columns=['a','b','c','d'])
df.plot.barh(stacked=True)
执行上面示例代码,得到以下结果 -
可以使用
plot.hist()
方法绘制直方图。我们可以指定
bins
的数量值。
import pandas as pd
import numpy as np
df = pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
df.plot.hist(bins=20)
执行上面示例代码,得到以下结果 -
要为每列绘制不同的直方图,请使用以下代码 -
import pandas as pd
import numpy as np
df=pd.DataFrame({'a':np.random.randn(1000)+1,'b':np.random.randn(1000),'c':
np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])
df.hist(bins=20)
执行上面示例代码,得到以下结果 -
Boxplot可以绘制调用
Series.box.plot()
和
DataFrame.box.plot()
或
DataFrame.boxplot()
来可视化每列中值的分布。
例如,这里是一个箱形图,表示对
[0,1)
上的统一随机变量的
10
次观察的五次试验。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
df.plot.box()
执行上面示例代码,得到以下结果 -
可以使用
Series.plot.area()
或
DataFrame.plot.area()
方法创建区域图形。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.plot.area()
执行上面示例代码,得到以下结果 -
可以使用
DataFrame.plot.scatter()
方法创建散点图。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.plot.scatter(x='a', y='b')
执行上面示例代码,得到以下结果 -
饼状图可以使用
DataFrame.plot.pie()
方法创建。
import pandas as pd
import numpy as np
df = pd.DataFrame(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot.pie(subplots=True)
执行上面示例代码,得到以下结果 -
文章来源互联网,如有侵权,请联系管理员删除。邮箱:417803890@qq.com / QQ:417803890
Python Free
邮箱:417803890@qq.com
QQ:417803890
皖ICP备19001818号
© 2019 copyright www.pythonf.cn - All rights reserved
微信扫一扫关注公众号:
Python Free